Countable dense homogeneous filters and the covering property of Rothberger

Lyubomyr Zdomskyy

Joint work with D. Repovš and S. Zhang

Kurt Gödel Research Center for Mathematical Logic, Universität Wien http://www.logic.univie.ac.at/~lzdomsky

> Winter School, Hejnice, February 1, 2013

1/8

A topological space X has property *CDH* (abbreviated from *countable dense homogeneous*)

A topological space X has property CDH (abbreviated from countable dense homogeneous) if for arbitrary countable dense subsets D_0, D_1 of X there exists a homeomorphism $\phi : X \to X$ such that $\phi[D_0] = D_1$.

A topological space X has property CDH (abbreviated from countable dense homogeneous) if for arbitrary countable dense subsets D_0, D_1 of X there exists a homeomorphism $\phi : X \to X$ such that $\phi[D_0] = D_1$.

The following question has been stated is recent papers of A. Medini, D. Milovich and R. Hernández-Gutiérrez, M. Hrušák.

Question

Characterize non-meager filters on ω which are CDH when considered with the topology inherited from 2^{ω} .

П

Do we know something about CDH filters?

(□) (型) (E) (E) (E) (C) 3/8

Do we know something about CDH filters?

Question

Is there a ZFC example of a CDH filter on ω ?

Do we know something about CDH filters?

Question

Is there a ZFC example of a CDH filter on ω ? What about ultrafilters?

Is there a ZFC example of a CDH filter on ω ? What about ultrafilters?

Question

Is there a ZFC example of a non-meager non-CDH filter on ω ?

Is there a ZFC example of a CDH filter on ω ? What about ultrafilters?

Question

Is there a ZFC example of a non-meager non-CDH filter on ω ? What about ultrafilters?

Is there a ZFC example of a CDH filter on ω ? What about ultrafilters?

Question

Is there a ZFC example of a non-meager non-CDH filter on ω ? What about ultrafilters?

Theorem (R. Hernández-Gutiérrez, M. Hrušák 2012) Every non-meager P filter is CDH. Is there a ZFC example of a CDH filter on ω ? What about ultrafilters?

Question

Is there a ZFC example of a non-meager non-CDH filter on ω ? What about ultrafilters?

Theorem (R. Hernández-Gutiérrez, M. Hrušák 2012) Every non-meager P filter is CDH.

Theorem (A. Medini, D. Milovich 2012) Under CH there exists a CDH ultrafilter which is a not P-point. \Box

Is there a ZFC example of a CDH filter on ω ? What about ultrafilters?

Question

Is there a ZFC example of a non-meager non-CDH filter on ω ? What about ultrafilters?

Theorem (R. Hernández-Gutiérrez, M. Hrušák 2012) Every non-meager P filter is CDH.

Theorem (A. Medini, D. Milovich 2012) Under CH there exists a CDH ultrafilter which is a not P-point. \Box

A filter \mathcal{U} on ω is a P^- -filter, if for every sequence $\langle U_n : n \in \omega \rangle$ of elements of \mathcal{U} there exists a sequence $\langle u_n : n \in \omega \rangle$ such that $u_n \in [U_n]^{<\omega}$ for all n and $\bigcup_{n \in \omega} u_n \in \mathcal{U}^+$.

A filter \mathcal{U} on ω is a P^- -filter, if for every sequence $\langle U_n : n \in \omega \rangle$ of elements of \mathcal{U} there exists a sequence $\langle u_n : n \in \omega \rangle$ such that $u_n \in [U_n]^{<\omega}$ for all n and $\bigcup_{n \in \omega} u_n \in \mathcal{U}^+$.

Warning: non-standard notation!

A filter \mathcal{U} on ω is a P^- -filter, if for every sequence $\langle U_n : n \in \omega \rangle$ of elements of \mathcal{U} there exists a sequence $\langle u_n : n \in \omega \rangle$ such that $u_n \in [U_n]^{<\omega}$ for all n and $\bigcup_{n \in \omega} u_n \in \mathcal{U}^+$.

Warning: non-standard notation!

Attempt. Is every non-meager P^- -filter CDH?

A filter \mathcal{U} on ω is a P^- -filter, if for every sequence $\langle U_n : n \in \omega \rangle$ of elements of \mathcal{U} there exists a sequence $\langle u_n : n \in \omega \rangle$ such that $u_n \in [U_n]^{<\omega}$ for all n and $\bigcup_{n \in \omega} u_n \in \mathcal{U}^+$.

Warning: non-standard notation!

Attempt. Is every non-meager P^- -filter CDH? Natural attempt

A filter \mathcal{U} on ω is a P^- -filter, if for every sequence $\langle U_n : n \in \omega \rangle$ of elements of \mathcal{U} there exists a sequence $\langle u_n : n \in \omega \rangle$ such that $u_n \in [U_n]^{<\omega}$ for all n and $\bigcup_{n \in \omega} u_n \in \mathcal{U}^+$.

Warning: non-standard notation!

Attempt. Is every non-meager P^- -filter CDH? Natural attempt because there are ZFC examples of non-meager P^- filters,

A filter \mathcal{U} on ω is a P^- -filter, if for every sequence $\langle U_n : n \in \omega \rangle$ of elements of \mathcal{U} there exists a sequence $\langle u_n : n \in \omega \rangle$ such that $u_n \in [U_n]^{<\omega}$ for all n and $\bigcup_{n \in \omega} u_n \in \mathcal{U}^+$.

Warning: non-standard notation!

Attempt. Is every non-meager P^- -filter CDH? Natural attempt because there are ZFC examples of non-meager P^- filters, both being P^- filters and CDH filters are weakenings of being a P-filter.

It is consistent that there exists a non-meager non-CDH filter \mathcal{U} on ω which has a base with the Rothberger covering property.

It is consistent that there exists a non-meager non-CDH filter \mathcal{U} on ω which has a base with the Rothberger covering property. Rothberger property:

For each sequence $\langle \mathcal{O}_m : m < \omega \rangle$ of open covers of Xthere is a sequence $\langle O_m : m < \omega \rangle$ with each $O_m \in \mathcal{O}_m$ and $\bigcup_{m \in \omega} O_m = X$.

It is consistent that there exists a non-meager non-CDH filter \mathcal{U} on ω which has a base with the Rothberger covering property. Rothberger property:

For each sequence $\langle \mathcal{O}_m : m < \omega \rangle$ of open covers of Xthere is a sequence $\langle O_m : m < \omega \rangle$ with each $O_m \in \mathcal{O}_m$ and $\bigcup_{m \in \omega} O_m = X$.

The Rothberger covering property of a base of a filter \mathcal{U} implies the following combinatorial property of \mathcal{U} :

For each sequence $\langle U_m : m < \omega \rangle \in \mathcal{U}^+$ there is a sequence $\langle k_m : m < \omega \rangle$ with each $k_m \in U_m$ and $\{k_m : m \in \omega\} \in \mathcal{U}^+$.

It is consistent that there exists a non-meager non-CDH filter \mathcal{U} on ω which has a base with the Rothberger covering property. Rothberger property:

For each sequence $\langle \mathcal{O}_m : m < \omega \rangle$ of open covers of X there is a sequence $\langle O_m : m < \omega \rangle$ with each $O_m \in \mathcal{O}_m$ and $\bigcup_{m \in \omega} O_m = X$.

The Rothberger covering property of a base of a filter \mathcal{U} implies the following combinatorial property of \mathcal{U} :

For each sequence $\langle U_m : m < \omega \rangle \in \mathcal{U}^+$ there is a sequence $\langle k_m : m < \omega \rangle$ with each $k_m \in U_m$ and $\{k_m : m \in \omega\} \in \mathcal{U}^+$.

Indeed, every $X \in \mathcal{U}^+$ in a natural way gives rise to an open cover \mathcal{O}_X of \mathcal{U} .

It is consistent that there exists a non-meager non-CDH filter \mathcal{U} on ω which has a base with the Rothberger covering property. Rothberger property:

For each sequence $\langle \mathcal{O}_m : m < \omega \rangle$ of open covers of X there is a sequence $\langle O_m : m < \omega \rangle$ with each $O_m \in \mathcal{O}_m$ and $\bigcup_{m \in \omega} O_m = X$.

The Rothberger covering property of a base of a filter \mathcal{U} implies the following combinatorial property of \mathcal{U} :

For each sequence $\langle U_m : m < \omega \rangle \in \mathcal{U}^+$ there is a sequence $\langle k_m : m < \omega \rangle$ with each $k_m \in U_m$ and $\{k_m : m \in \omega\} \in \mathcal{U}^+$.

Indeed, every $X \in \mathcal{U}^+$ in a natural way gives rise to an open cover \mathcal{O}_X of \mathcal{U} . So our attempt to construct a ZFC example of a CDH filter has no chance.

5/8

Lemma

Assume that CH holds in V. Then in $V^{\mathbb{C}_{\omega_1}}$ there exists a centered family $\mathcal{A} \subset V \cap [\omega]^{\omega}$ such that no filter $\mathcal{U} \supset \mathcal{A}$ with a base consisting of ground model reals is CDH.

Lemma

Assume that CH holds in V. Then in $V^{\mathbb{C}_{\omega_1}}$ there exists a centered family $\mathcal{A} \subset V \cap [\omega]^{\omega}$ such that no filter $\mathcal{U} \supset \mathcal{A}$ with a base consisting of ground model reals is CDH.

Lemma (M. Scheepers, F. Tall 2010)

In $V^{\mathbb{C}\omega_1}$ every subspace of $V \cap [\omega]^{\omega}$ has the Rothberger covering property.

Lemma

Assume that CH holds in V. Then in $V^{\mathbb{C}_{\omega_1}}$ there exists a centered family $\mathcal{A} \subset V \cap [\omega]^{\omega}$ such that no filter $\mathcal{U} \supset \mathcal{A}$ with a base consisting of ground model reals is CDH.

Lemma (M. Scheepers, F. Tall 2010)

In $V^{\mathbb{C}\omega_1}$ every subspace of $V \cap [\omega]^{\omega}$ has the Rothberger covering property.

Proof of Theorem.

Throughout the proof we shall work in V[H], where H is a \mathbb{C}_{ω_1} -generic filter over a model V of CH. Let $\mathcal{A} \in V[H]$, $\mathcal{A} \subset [\omega]^{\omega} \cap V$ be such as above.

Let ${\mathcal F}$ be any ultrafilter containing ${\mathcal A}$ and ${\mathcal U}$ be the filter generated by ${\mathcal F}\cap V.$

Let \mathcal{F} be any ultrafilter containing \mathcal{A} and \mathcal{U} be the filter generated by $\mathcal{F} \cap V$. Obviously, $\mathcal{A} \subset \mathcal{U}$, \mathcal{U} is a filter, and $\mathcal{U} \cap V$ is a base of \mathcal{U} .

Let \mathcal{F} be any ultrafilter containing \mathcal{A} and \mathcal{U} be the filter generated by $\mathcal{F} \cap V$. Obviously, $\mathcal{A} \subset \mathcal{U}$, \mathcal{U} is a filter, and $\mathcal{U} \cap V$ is a base of \mathcal{U} . Thus \mathcal{U} fails to be CDH.

- Let \mathcal{F} be any ultrafilter containing \mathcal{A} and \mathcal{U} be the filter generated by $\mathcal{F} \cap V$. Obviously, $\mathcal{A} \subset \mathcal{U}$, \mathcal{U} is a filter, and $\mathcal{U} \cap V$ is a base of \mathcal{U} . Thus \mathcal{U} fails to be CDH.
- \mathcal{U} is non-meager because $\mathcal{U} \cap V$ is a "half" of $V \cap 2^{\omega}$ and old reals remain non-meager after adding Cohen reals.

- Let \mathcal{F} be any ultrafilter containing \mathcal{A} and \mathcal{U} be the filter generated by $\mathcal{F} \cap V$. Obviously, $\mathcal{A} \subset \mathcal{U}$, \mathcal{U} is a filter, and $\mathcal{U} \cap V$ is a base of \mathcal{U} . Thus \mathcal{U} fails to be CDH.
- \mathcal{U} is non-meager because $\mathcal{U} \cap V$ is a "half" of $V \cap 2^{\omega}$ and old reals remain non-meager after adding Cohen reals.

 \mathcal{U} has a Rothberger base, namely $\mathcal{U} \cap V$.

Thank you for your attention.

